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Abstract-Most thermal conductivity measuring instruments based on the transient line source technique 
make provision for compensating for the end-effect in a practical manner. A theoretical analysis show8 that the 
error caused by the end-effect can be kept very small, so that it is not always necessary to correct for this in a 
practical manner. An upper limit for the error is derived. In the analysis a distinction is made between the 
conductive and the convective end-effects ; in the first part of the measurement the conductive effect dominates, 

but its influence is rapidly overtaken by that of the convective effect. 

1. INTRODUCTION 

THERMAL conductivity measurements are frequently 
done with a hot-wire apparatus. Such an apparatus 
consists of a thin platinum wire immersed in a liquid 
whose thermal conductivity has to be determined. An 
electrical current is used to generate heat in the wire. 
The resulting temperature rise of this wire is inversely 

proportional to the thermal conductivity of the liquid, 
and will change the resistance of this wire slightly. This 
resistance change is measured using a Wheatstone 
or other resistance bridge. When the bridge output 
voltage is plotted against a logarithmic time-base, a 
straight line is found whose slope is determined by the 
thermal conductivity of the liquid. In this procedure it is 
assumed that the wire has a uniform temperature, but 
this is not correct because its ends are being cooled 
down by the wire-supports. The measured temperature 
rise is thus smaller than expected and so the real 
thermal conductivity is smaller than the measured 
value. 

It is common practice to compensate for this effect 
in a practical manner by either one of the following 
methods : 

--The compensating lead method [l-S] employs two 
wires in different branches of a Wheatstone bridge so 
that a subtracting effect deletes the end-effects and 
the response of the bridge is that of a part of an infinite 
wire. A great disadvantage of this method is that 
the wires must be matched with respect to their 
resistance-to-length ratios to assure the same heat 
production per unit length in long and short wires. 
Kestin and Wakeham [4] report that for wires of 0.15 
cm in length taken from the same roll, these ratios 
may differ by as much as 4% ! This compensating 
method can be used to compensate simultaneously 
for thermocouple and strain effects, as discussed in 

C61. 
-The potential lead method [9-141 employs two 

potential taps at c. 20 mm from the ends of the wire. 
These taps consist ofa wire even thinner than the hot- 

wire to which they are spot-welded. The temperature 
rise of thz hot-wire is said to be very little influenced 
by this connection. This method is inconvenient to 
use when taking measurements of electrically con- 
ducting liquids [S] because of insulation problems. 

In the papers referred to, such practical corrections 
are applied because an analysis that takes the difficult 
experimental boundary conditions into account is 
not available. The relative method, in which two 
Wheatstone bridges are used, also partially eliminates 
the end-effect [15]. 

In previous studies of the end-effect [l&20] only 
conduction was taken into account. In this paper it is 
shown that a convective end-effect constitutes the 
main error in those cases in which a measurement is 
continued ‘until the onset of convection’; only for very 
short measuring times is the convective end-effect 
negligible. The conductive end-effect was first studied 
by Blackwell [16,17], who considered the temperature 
distribution outside a circular cylinder in the following 
cases : 

6) 

(ii) 

(iii) 

Transient heat flow in the infinite region bounded 
internally by an (infinite) circular cylinder. There is 
a constant flux of heat across a finite length of the 
internal boundary surface and the remainder of 
this surface is insulated. 
Transient heat flow in the semi-infinite region 
bounded internally by a circular cylinder and by 
planes at right angles to the axis of the cylinder. 
There is a constant flux of heat across the cylin- 
drical boundary and the planes are maintained 
at zero temperature. 
As for case(i), with constant heat production in the 
cylinder. 

Case (i) would give the most appropriate error for a 
potential lead correction where the potential leads have 
the same thickness as the wire, since in both cases the 
temperature rise at the end is halfthat ofthe infinite part 
of the wire. 
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NOMENCLATURE 

a radius of the hot-wire T temperature variable 
A gfiQPr/2nalv(Pr - 1) U velocity of the liquid around the wire 
C e”.5772 (0.5772 = Euler’s constant) 

C, integration constant 
; 

C, integration constant 

taj$e transform of u 

X 

erf error function 
radial variable in complex plane 

z variable for the distance from the end of 
E error due to the end-effect the wire. . . 
4 grl constant 

In natural logarithm Greek symbols 
K, Bessel function heat loss coefficient 

K, Bessel function ; coefficient for cubical expansion, 

1, effective length of the conductive end- cK,/&ra*&) 
effect a operator for partial differentiation 

4 penetration length 5 radius in complex plane 
L length of the wire 0 Laplace transform of the temperature 
Y Laplace operator K thermal diffusivity 
P Laplace domain variable K1 thermal diffusivity of the wire 
Pr Prandtl number 1 thermal conductivity 
4 heat sink due to conduction to the 11 thermal conductivity of the wire 

environment p dynamic viscosity 
Q heat production in the wire per unit V kinematic viscosity 

length K 3.141592 

‘R 
radial distance from the center of the wire P density 

rla Ktfa* 

s penetration length in the Laplace domain ;1 axial heat flux in the liquid 
t variable for time 4, axial heat flux in the wire 

t, time after which measurement is stopped co infinity. 

Case (ii), with the assumption made in (iii), would be a quantitative analysis of this convective end-effect is 
‘worst case’ analysis for a wire soldered to its supports. 

The much-referred-to analyses of Healy et al. [18] 
and Haarman [19] are both based on the work of 
Blackwell. Haarman gave a rough estimation of the 
conductive end-effect using a steady-state temperature 
distribution. His result is the same as the conductive 
end-effect determined in the time-dependent analysis in 
Section 3 of this paper. 

Horrocks and McLaughlin [20] also used a steady- 
state temperature distribution in their estimation, 
but ended up with a formula containing the outer cell 
dimensions, which is not very appropriate. 

A decrease in density of the liquid in the thermal 
boundary layer around the wire is the driving force 
for a convectional current which moves this thermal 
boundary layer upwards. This results in an inflow of 
cold liquid at the bottom, causing the bottom end-effect 
to increase. The same mechanism will cause the top 
end-effect to decrease. Initially the increase and 
decrease will roughly cancel each other out as far as the 
average temperature of the wire is concerned. At a 
certain stage, however, the convective current will have 
penetrated so far along the wire, that near the top of 
the wire the end-effect will have vanished almost 
completely while at the bottom it will still be growing. A 

given in Section 4. It is remarkable that this analysis has 
never been done before; most thermal conductivity 
measurements done in the past are likely to have been 
plagued by this type of end-effect rather than by the 
conductive end-effect. Only since the introduction of 
fast electronics have measurement times become so 
short that convection now plays a minor role. 

The ‘onset ofconvection’is a phenomenon that is still 
not well understood. In the last section a possible cause 
of this effect is given, and other consequences of 
convective motion are discussed. 

2. DEFINITION OF THE END-EFFECT 

An electrical current sent through an infinitely long, 
thin wire immersed in a liquid will cause a temperature 
rise, the extent of which depends on the properties of 
the wire and the liquid [18]. A finite wire, however, 
will be cooled down by its supports, thus causing a 
temperature defect near its ends (see Fig. 1). 

The measured average temperature rise of the wire 
is therefore slightly smaller than that predicted by 
the theory. This difference causes the end-effect. The 
relative end-effect error is therefore defined as the 
difference in surface area between the two temperature 
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FIG. 1. Theoretical and practical temperature distributions 
over the length of the wire. The hatched areas represent the 

end-effect error. 

distributions in Fig. 1, relative to the absolute area 
under the theoretical curve. The size of the relative end- 
effect error will be studied in the sections that follow. 

The average temperature rise of the wire is found by 
measuring the change in the wire’s resistance, which is 
directly proportional to it. In practice this means that 
the change in resistance is subject to the same error. 

3. ERROR DUE TO THE CONDUCTIVE 

END-EFFECT 

A worst-case analysis for a wire soldered to ‘cold 
supports is given in this section. The problem is 
described as follows : 

-Transient heat flow in the semi-infinite region 
bounded internally by a circular cylinder and by 
planes at right angles to the axis of the cylinder. There 
is a constant rate of heat production in the cylinder. 

Axial.conduction in the liquid is assumed to be 
negligible. In the Appendix an analysis is given in which 
this last assumption is discussed. 

Note that even if the axial heat flow is not negligible, 
taking this effect into account is misleading since 
convectional currents are very likely to disturb the 
temperature profile in the liquid. This statement of the 
problem, which is less complicated than those proposed 
by Blackwell, is therefore allowed without compro- 
mising the accuracy at all. 

To determine the end-effect, an expression for the 
temperature rise ofthe wire as a function of the distance 
from the end of the wire must be found when a certain 
amount of heat per unit length is produced in the wire. 
The equation governing the temperature of the wire 
near its end is : 

1 8T aZT Q-q --_=-+-, 
K1 at a22 na21, 

T = T(t,z) (1) 

with : 

T(0, z) = 0 (2) 

T(t, 0) = 0 

l im am4 o 

-= 

z-tm az 

Condition (3) states that the actual wire support has 
an infinite heat capacity (compared to the wire). This is 
usually the case when the end of the wire is soldered to 
its supports. When potential leads of the same thickness 

are spot-welded (with no addition of material) to the 
wire at a distance sufficiently far from the end, this 
condition should read T&O) = T(t, co)/2; in agree- 
ment with Haarman [ 191, we can then readily conclude 
that the end-effect is half of that of the case we want 
to solve. Normally supports have a thermal mass in 
between these two cases. The error resulting from this 
analysis can be reduced by a certain percentage 
depending on the heat capacity of the support. The 
term q represents heat loss caused by conduction to the 
surrounding liquid 

q = aT. (3 

The heat loss coefficient a, which is thus a constant in 
the solution, actually varies slowly from its initial value 
to its end value, but for this purpose it can be assumed 
to be constant. It is obvious, however, that the smallest 
value for a will give the upper limit for the end-effect, 
and the biggest value the lower limit. How such a value 
can be found will be shown at the end of this section. 

Calculation of the conductive end-effect is expected 
to be done in this manner : 

-calculation of the temperature distribution in the 
wire as a function of time and place, followed by 

-integration over the temperature defect [T(t, 00) 
- T(t,z)] from z = 0 to z = co and division by 
L. T(t, 00). 

The first step is analytically not possible, and this is 
likely to be the reason why this problem could not be 
solved previously. If, however, the following line of 
calculation is followed, the result is obtained by stan- 
dard mathematics : 

-calculation of the temperature distribution in the 
wire as a function of the Laplace variable and place, 
followed by 

-integration in the Laplace domain over the 
temperature defect from z(p, 0) to z(p, co), followed by 
division by L * T(t, co), and then 

-transformation to the time domain. 

The calculation now given follows from this scheme. 
After Laplace transform of equation (1) an ordinary 

differential equation is obtained 

whose solution can easily be found, using the trans- 
forms of the boundary conditions (3) and (4) 

B(P,z)=$ 
1 

x 1 -expC-(z/~)Jp+(aKl/~a2~,)1 
{ P(P + aKll~a2U 1. (7) 

Equation (7) describes the temperature profile in the 
Laplace domain. From the definition in Section 2, we 
find that the end-effect is obtained by calculating 

E= 
2 

m 
L-T@, ~0) s 

[T&m)-T&z)] dz (8) 
o 
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where the factor 2 shows that both ends of the wire are 
taken into account. 

Since determining the actual temperature profile is 
not the basic aim of this study, the inverse Laplace 
transform followed by the integration will now be 
interchanged using 

s 
m Y-‘{f(p,z)) dz = 2-l 

0 

{j~fWW>. (9) 

The error due to the end-effect is then described by 

= 29 - l &/mP(P + B)““) 
~*~-1{l/P(P+~8)l 

(10) 

where 

(11) 

After the inverse transforms have been carried out, this 
reduces to 

E=+F( erffi-2JBtlne-@ . 
1 _e-Bt > 

(12) 

A minimum value for the heat loss coefficient CI still has 
to be found. 

As conduction in the liquid in the vertical direction is 
being neglected (see Appendix), the infinite solution for 
the temperature profile in the liquid is valid for all 
positive values of z 

T = &In (4rctla’C). 

It follows that the heat sink 4, which represents the heat 
loss ofthe wire to the surrounding liquid, can be written 
as: 

4rta 

’ = In (4Kt/a2C) 
T. 

The heat loss coefficient c( follows directly from this. A 
minimum value (the worst case) for this GI is found if one 
uses for t the time after which the experiment is stopped. 

4?rl 

a = In (4rctJa’C) ’ 
(15) 

Substitutionofthisvalueinto equation(l2)finallygives 
the upper limit for the error due to the cooling down of 
the two ends of the wire 

E = f J(A.,/l) In (4rctJa’C) 

x erfJgS-2JEFe-8’ . ( 1 -e-B’ 
> 

(16) 

In most applications fit >> 1, in which case the term 
between brackets in equation (16) has a value of 1; so the 

final result is 

E = : J(1,/1) In (4rct,/a2C). (17) 

A measurement of the thermal conductivity of 
toluene at 25°C with a platinum wire 20 cm long and 
having a radius of lOpm, using a measurement time of 1 
s, will be subject to an error of 0.33% if the heat input is 
0.35 W m-l. 

The implication of this small value for the end-effect 
is that an attempt at practical elimination by means of 
potential leads or compensating leads is, because of 
complexities, very likely to introduce errors larger than 
that which should be eliminated. 

The final result is exactly the same as was found by 
Haarman [19] but the present solution is based on a 
time-dependent temperature profile in the liquid. The 
upper error for the end-effect is therefore determined 
with a high degree of reliability which Haarman’s 
method cannot guarantee. 

The method presented applies only when the con- 
vective effects are smaller than the axial conduction 
effects or of the same order. 

For the analysis in the next section it is convenient to 
define the effective length of the conductive end-effect 

(0. 
The errors due to the conductive end-effect can also 

be defined as 

E = 21,/L (18) 

and its corresponding effective length is thus 

a 
1, = - 

24/ 
(1,/n) In (4ict,/a2C. (19) 

4. ERROR DUE TO THE CONVECTIVE 

END-EFFECT 

In this section the influence ofconvection on the end- 
effect is estimated. An accurate analysis would not be 
justified, due to the great sensitivity to verticality, 
but cannot be done in any case because of different 
experimental boundary conditions. The error calcu- 
lated in this section is likely to be an overestimation 
(worst case), but is very useful for design purposes 
(instrument as well as measuring procedure). 

While the wire is being heated, a convectional liquid 
flow around the wire will arise. This flow shifts the 
whole thermal boundary layer upwards, thus causing 
the bottom end-effect to lengthen and the top end-effect 
to shorten. At a certain time, the top end-effect will have 
vanished almost completely, whereas at the bottom it 
will still be growing. To determine the time at which this 
will occur, the penetration length of the convectional 
flow must be determined as a function of time. 

After this time, the analysis given in Section 3 is no 
longer valid(and neither are those ofBlackwel1 [ 16,171, 
Haarman [19] or Healy et al. [18]) and another esti- 
mate of the end-effect must be made. 
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Therefore the behaviour of the convectional flow 
around the wire must be studied first. 

4.1. Velocity and penetration profile around the wire 
Goldstein and Briggs [21] presented the solution 

of the free convection around a heated wire as a 
complicated infinite integral. The derivation, which was 
not given, was also made by the author to conclude 
that the integral, as stated, was correct. Their statement 
ofthe problem and their solution are briefly given in this 
subsection. It is important to note that the temperature 
and velocity profiles ‘far’ away from the ends ofthe wire 
are considered ; the dependence on the axial variable is 
then negligible. Three coupled differential equations for 
conservation of mass, momentum and energy must be 
solved. 

The Boussinesq approximation states that the 
temperature dependence of density can only be used 
to describe the buoyancy force, but that for all other 
purposes all physical properties are constant. This 
approximation is used to simplify the equations. From 
the mass conservation equation, which reduces to 
V * u = 0, and the assumption that far from the end of 
the wire all derivatives with respect to the axial variable 
are zero, it follows that the convective operator (u-v), 

The solution of this set of equations in the Laplace 
domain can be found using standard methods. The 
solution for the velocity in the axial direction is (not 
mentioned in [21]) : 

u(r, P) = 
sBQPr 1 

3 2nalv(Pr - 1) pq 

’ 
K0ha) fG(qr/JPr) &dqr) 
Al Ko(qa/ Jpr) - %i&? 1 ’ 

(28) 

The penetration length, which follows from inte- 
grating the velocity from time zero to an arbitrary point 
in time, can now be simply found by dividing the 
equation for the velocity by the Laplace variable. The 
resulting equation for the penetration length is thus : 

3r,p) = 
sSQPr 1 

2zalv(Pr - 1) p2q3 

’ 
&(qa) hkr/JPr) Ko(qr) 
Kl(q4 KoW JW -K 1 ’ 

(29) 

Application of the usual Bromwich contour integral for 
the inverse Laplace transform when the function has 
a branch point at p = 0, yields for velocity and 
penetration length in the real time domain [21] : 

u(r, t) = 
sBQt 

x21(Pr - 1)~ s 
m(l-vz~~e-vz’) t(R,V,Pr)dV 

0 

s(r, t) = 
sSQt2 

x2i(Pr- 1)~~ s 

m (- 1+ V2r-v~4r2+em”2r) 5(R, v, Pr) dV 

c 

(30) 

(31) 

5W, V, Pr) = 
Jo(RVY,(V-JI(VURV + J_ JdRV/ JWJdV/ JPr)+ WV/ JPr)W/ JW 

WI+ YW) nV C-W/ Jpr)+ YEW/ JPr)] CJWJ+ Y:(V)1 

- CJOWAV+ UVW)I CJ,(RI/IJPr)Y,(V/JPr)-Y,(RVlJPr)J,(V/ JWI . 
[G(v/ Jpr)+y~(v/Jpr)l[J:(I/)+ Y~(Vl 

f32j 

which occurs in both the energy and momentum The integrals were calculated numerically and the 
equations, yields a null operator. This uncouples the results are presented similarly to those ofGoldstein and 
energy and momentum equations ; the solution of the Briggs [21] for their case Pr = 1 (see Figs. 2a and 2b). 
former, though, appears in the source term of the latter. For our case it is sufficiently accurate to approximate 
Neglecting viscous dissipation terms, the resulting the maximum penetration length using the following 
equations with the appropriate boundary conditions formula, found by a least-squares analysis ofthe results 
are [21] : presented in Fig. 2a : 

aT K a az- 

at=-- 5F P ar ( > I, = 0.0055 F Pr-0.62(log,o r)“.84. (33) 

g=Fi rg +gpT 
( > 

(21) The error made by applying this formula is typically 
20%. The distance from the wire at which this maximum 

T=O at t<O,r>a (22) penetration occurs is determined roughly by : 

T=O at r+m, t>O (23) (R-1) -=0.2 orat r=a+0.2&. 

aT Q 
JT 

(34) 

ar= 
-- at r=a,t>O 

2nai (24) 
4.2. The inJluence of the penetration length on the end- 

u=O at t<O,r>a (25) e$ect 

u=O at r+cO,t>O (26) 
For the purpose of a worst-case approximation, it 

can be assumed that over the penetration length the 
u=O at r=a,t>O. (27) wire has been cooled down to the environmental 
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FIG. 2a. Penetration profiles for various Pr with r as a parameter. The vertical axis shows values of 
[s(r, t)A]/&Qt2 and the horizontal axis of (R - 1)/2Jr. 

temperature by the inflow of liquid at this temperature top end-effect to diminish (by the continuous inflow of 

(Fig. 3). It is also assumed that the conductive end-effect hot liquid from below) and the bottom end-effect to 
and the convective end-effect do not interfere and that elongate (Fig. 3b). The convectional current will now 
the two effects can be superimposed. start to heat up the top support as well. Eventually the 

Due to the convective motion in the liquid, the con- top end-effect will be small at the transition time (Fig. 

ductive end-effects are shifted upwards causing the 3~). This ‘transition time’is defined as the time at which 
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FIG. 2b. Velocity profiles for various Pr with r as a parameter. The vertical axis shows values of [u(r, r)k]/t_$Qt 
and the horizontal axis of (R - 1)/2,/r. 

the conductive penetration length and the convective analysis made in Section 3 is no longer suflicient, and 
penetration length are equal. The convective and con- the error is found from : 
ductive end-effect will then be approximately equal 
in size. After the transition time (Fig. 3d), the total end- E = L + 4 -. 

L 
(35) 

effect can be estimated by summing half the conductive 
end-effect and the whole convective end-effect. The The transition time after which the convective end- 
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FIG. 3. Assumed temperature profiles at different stages of the measurement. 

effect dominates over the conductive end-effect can now 
be determined by equating the effective length of the 
conductive end-effect [equation (19)] and the pene- 
tration length [equation (33)] and solving for t from 
this implicit equation : 

183a Pro.62 
tZ[ln(rct/a2)]0~s4 = ~ 

sBQ 7 
12, In (4~tJn’C). 

(36) 

The total error due to the end-effects after the transition 
time can thus be written as : 

E = & J(i,/l.) In (4ict,/a2C) 

+0.0055 q Pr-0~62[log,o(rct/a2)]0~84. (37) 

In reality the convective and conductive end-effects 
are not as strictly separated at this formula implies, the 
reason being that near the end of the wire convective 
terms should be included in the energy and momentum 
equation. The analysis in this section is therefore not 
reliable enough to warrant making a theoretical cor- 
rection afterwards, but, as stated before, it can be used 
for design purposes. 

Example. A measurement on toluene at 25°C with a 
wire 20 pm in diameter in which the heat input is 0.35 W 
m- ’ yields a transition time of 1.5 s. 

5. ONSET OF CONVECTION 

The transient hot-wire method is preferred to the 
steady-state method because the effect of convection 
can be clearly seen in the measured transient as a 
deflection from a straight line in the T vs In (t) plot, and 
so can be eliminated. 

That convection plays an important role cannot be 
denied since several researchers [22-241 have found a 
strong correlation between the onset of the distur- 
bance and a certain Rayleigh number. The value of 
this Rayleigh number varies among the different re- 
searchers and is therefore likely to be dependent on 
the experimental set-up. 

The real cause of this disturbance is still not well 
understood. I? is very unlikely, however, that the 
disturbance is caused by transition from a laminar to a 
turbulent flow profile. Several factors could cause 
this effect, and it is likely that some will occur 
simultaneously as well. 

From the analysis in the previous section, it can be 
deduced that this effect is caused by an extended con- 
vective end-effect. In that case the length of the wire 
would be an important parameter. 

The verticality of the wire is reported to have a 
considerable influence [S] on the onset time. This 
makes sense, since convectional currents are likely to 
transport ‘cold’ liquid in a vertical direction to a wire 
that is not mounted vertically, thus cooling it down. In 
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the example given above, the penetration length is 0.33 
mm at the transition time (1.5 s) which is well below the 
onset time of convection. At this stage, the penetration 
length is already more than 16 wire diameters. After 4 s 
this will have increased to c. 130 wire diameters and the 
sensitivity to verticality becomes obvious. 

Another possible source of this disturbance was 
observed in an experiment using a very high heat input 
per unit length to increase the wire temperature ca. 
30°C. During this experiment the wire made an un- 
expected sideways movement of at least 1 mm (50 
wire diameters) even though the wire was under ten- 
sion. This movement may be caused by convectionai 
currents around local disturbances either in the liquid 
or on the wire, or it may be an electromagnetic effect 
(e.g. due to the terrestial field) ; it may also be caused by 
thermal expansion of the wire which is not immediately 
compensated for by the weight or spring tensioning the 
wire. If this phenomenon also occurs at lower heat 
inputs, which is very likely, the result could be a mixing 
of the thermal boundary layer around the wire which 
would cool down the wire. 

With longer times this mixing would become more 
pronounced because of the fast-increasing velocities 
in the boundary layer. The consequence for thermal 
conductivity measurements will be that the measured 
temperature increase will deviate from the expected 
linear relationship. 

An important consequence of the mixing effect is that 
the wire thickness becomes important : the thinner the 
wire, the more sensitive it will be to this mixing effect 
(lower inertia and more cooled down by the mixing due 
to a smaller heat capacity). 

6. CONCLUSIONS 

The conductive end-effect, which is dominant in the 
first part of the measurement, is almost constant during 
this period. The worst-case analysis presented will not 
differ too much from most practical cases so that its 
result can be used to correct the measured thermal 
conductivity, if necessary. 

The convective end-effect, however, causes an error 
that increases roughly with the time squared. This error 
cannot be accurately quantified due to the movement 
of fluid and wire, so it is not accurate to apply the 
theoretically derived correction factor to the measured 
result. It is therefore advisable to do the meas~ement 
quickly. 

Because the end-effect is normally negligible for 
small times, it is not necessary to introduce practical 
corrections when using a rapid measurement tech- 
nique. The unavoidable addition to the total systematic 
error caused by such a correction may be of the 
same size or larger than the error which is to be 
eliminated. The size of this systematic error is clearly 
demonstrated by the differences of up to 2% in 
measurement results of various experimenters, many of 
whom claim an accuracy of 0.2%. This level of accuracy 
probably represents the reproducibility or precision of 

the measurement and not the absolute accuracy of the 
method. 
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APPENDIX 

Heuristic analysis of the ratio of the heatjlows in the liquid and 
the wire 

In the analysis given in Section 2, it is assumed that the 
temperature rise T(r, z, t) in the liquid and in the wire is zero at 
z = 0. From this it seems quite reasonable to assume that the 
solution for the temperature distribution in the liquid near 
the end of the wire can be approximated by the temperature 
distribution far from the wire multiplied by a z-dependent 
function of an arbitrary form 

f(z), 4Ktlr’ << 1. (Al) 

The heat flux in axial direction in the liquid is then given by 

c#J;‘= -1; = +&El f’(z) 642) 

and the total amount of heat transported through the liquid to 
the supports is then 

s 
m &‘2nrdr = -qrct 

,=(I s 
m E,(t)dr f(K) (A3) 

e. 

where 

r2 a’ 
5== and t,=z. 

The total heat flow in the wire is easier to calculate, since the 
temperature over its cross-section is constant and equal to the 

FIG. Al. Ratio of the heat flow through the wire and through 
the liquid as a function of the measurement time, the wire 

radius and material properties. 

temperature of the liquid at a distance corresponding to the 
radius of the wire. 

3T 
4, = -I,tra2- 

dr ,=0 
= _+$EI (AS) 

The ratio of both heat flows is then 

(A6) 

In Fig. Al the last term is plotted. It is easy to see that for a 
measurement in toluene with a 20-pm-thick wire, the heat 
flows are approximately the same when the transition time is 
reached. In this case the conductive approach to the end-effect 
near the transition time is inaccurate. As mentioned earlier, 
this approach would be inaccurate anyway, since the 
convective currents will have distorted the heat flux in the 
liquid completely. If shorter measuring times are employed or 
if thicker wires are used, the heat flow ratio becomes more 
favourable, which increases the level of confidence of the 
analysis in Section 4. 

L’ERREUR PAR EFFECT D’EXTREMITE DANS LA DETERMINATION DE LA 
CONDUCTIVITE THERMIQUE A PARTIR DUN APPAREIL A FIL CHAUD 

R&nnnb-La plupart des instruments de mesure de conductivite thermique bases sur la technique de la source 
rectiligne foumit une maniere pratique de compensation de l’effet de bout. Une analyse thborique montre que 
l’erreur peut 8tre rendue tres petite, si bien qu’il n’est pas toujours necessaire de proceder a une correction de 
fapon pratique. On donne une limite suptrieure pour cette erreur. Dans cette analyse, on fait une distinction 
entre les effets de bout conductifet convectif; dans le premiere partie de la mesure l’effet conductifdomine, mais 

son influence est rapidement d&pas&e par celle de l’effet convectif. 
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DER FEHLER DURCH END-EFFEKTE BE1 DER BESTIMMUNG DER 
WARMELEITFAHIGKEIT MIT EINER HITZDRAHTAPPARATUR 

Znsammenfass.nng-Bei den meisten Geriiten zur Bestimmung der Warmeleitfahigkeit, die auf der 
instationiiren Hitzdraht-Technik basieren, wird der auftretende End-Effekt praktisch berilcksichtigt. Eine 
theoretische Untersuchung zeigt, daB der durch den End-Effekt verursachte Fehler sehr klein gehalten werden 
kann, so daB es im praktischen Fall nicht immer erforderlich ist, eine Korrektur vorzunehmen. Eine obere 
Grenze fur den Fehler wird hergeleitet. In der Untersuchung wird unterschieden zwischen dem konduktiven 
und dem konvektiven End-Effekt. Im ersten Teil einer Messung iiberwiegt der konduktive Effekt, aber sein 

EinfluD wird schnell durch den konvektiven Effekt tiberdeckt. 

I-IOf’PEIIIHOCTb M3-3A KOHHEBbIX I-IOTEPb I-IPM OHPE~EJIEHHH 
TEIIJIOHPOBO~HOCTM HA YCTAHOBKE C HAI-PETOH HHTbIO 

Arrao~anna-B 6onbumncrae ycrartoeox n_nll u3Mepetiwr TennonpoBoniiocrw, Hcnonb3yromnx necra- 
UWOIiaPHblii JISiHeiiHbIii WCTOSHUK, llPen)'CMOTPetia IIpaKTEi'IeCKaff KOMlleHCaUBR KOHUeBblX 3C@$eKTOB. 

Teope.TuwxKwii aHann noKa3brBaeT, ST0 OOrlZxWIHOCTb, BbI3BaHHaR ~THM ~@&KTOM, MOxeT’6blTb 

O%HbMana,TaK ST0 HeBC4ZrnaeeH,'~HOKOppeKTl,pOBaTb BII~~KTH~~CK~~XU~JIZ?X.YCT~HOBJI~H BepXHHfi 

n&JeAeJl ~O~peUIHOCT&S. np,, aHaJIU3e OT~eJlbHO HCC,EA,'IOTC,l KOHUeBbIe ITOTepH U3-3a KOHBeKUBB A 

rennonpoaonnocrri: na nepaofi crannn w3Mepemin npeo6nanaer K~H~YKTBBH~GI 3@eKT, B nanbael- 


